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Uniform Approximation Through Partitioning 

By S. E. Weinstein 

Abstract. In this paper, the problem of best uniform polynomial approximation to a 
continuous function on a compact set X is approached through the partitioning of X and 
the definition of norms corresponding to the partition and each of the standard Lp norms 
1 < p < co. For computational convenience, a pseudo norm is defined corresponding 
to each partition. When the partition is chosen appropriately, the corresponding best 
approximations (using both the norms and the pseudo norm) are arbitrarily close to a best 
uniform approximation. A chracterization theorem for best pseudo norm approximation 
is presented, along with an alternation theorem for best pseudo norm approximation to a 
univariate function. 

1. Introduction. The central problem of this paper is the best uniform poly- 
nomial approximation to a continuous function on a compact set. The solution of 
this problem is approached through the partitioning of the set and defining a norm 
corresponding to the partition. The unique best approximations in these norms are 
used as approximations to the desired best uniform approximation. 

In Section 2, it is shown that the partitions can be chosen so that the corresponding 
norm is close to the uniform norm and such that the corresponding best approxima- 
tion is close to a best uniform approximation. 

In Section 3, best approximation in these norms is characterized. 
In Sections 4 and 5, we consider a pseudo norm which corresponds to the partition 

of the compact set. This pseudo norm has computational advantages when compared 
to the norms of Sections 2 and 3. 

2. Norms Defined Through Partitioning. Let X be a compact metrizable set, 
and let ,u be a strictly positive measure on X such that all continuous functions on X 
are measurable. Let X-= U l Ei such that 

(2.1) A(E (rA E,) = 0, i # j, 

and 

(2.2) g(E,) > 0, i = 1, 2, , k. 

Such a measure-wise decomposition of X will be called an acceptable partition 
of X. 

Definition 2.1. Let U, = {Ei, } 1 be an acceptable partition of X. For 1 < p < o 

and f E L,(X), define 

(2.3) rJ(E., f) I" d1\Uu )I| /l 
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and define a norm on Lp(X) by 

(2.4) Iflu k . p max r,(Ej, f). 
i=l I', - --,k 

The case p = 2 is considered in Harris [2] and Weinstein [4] and [5]. 
Let { pj } , be a linearly independent set of functions in C(X), and define 

(2.5) IIn = {Pn(A; a) = , a'i(.): A = (a1, , an) C Rn} 

Definition 2.2. Let U, be an acceptable partition of X. For 1 < p < o and 
f E L,(X), there exists a polynomial Pn(A(U,, p); ) G Hn which minimizes 
lif - P.(A; *)1iuk , over all Pn(A; ) H H.. Such a polynomial is called a bestl 11u I IU 

approximation to f. 
We next show the uniqueness of the best I11 I I papproximation for 1 < p < o . 
LEMMA 2.3. Suppose I < p< o. If IIfIIUk,1 = Ilg9IUk,V = and|2(f + g)||U,, = 1, 

then f -g a.e. on all subsets E, C Uk such that r,(Ei, 2(f + g)) = 1. 
Proof. This is an immediate consequence of the strict convexity of the L, norms 

for 1 < p < o . 
THEOREM 2.4. Let Uk be an acceptable partition of X, and suppose that 

P,(A; x) = P(B; x), a.e. on some E C Uk, 

implies that A = B. 
Then, for I < p < o, each f E L,,(X) has a unique best H| |I|Uk, approximation 

from fl,~. 
Proof. Lemma 2.3 implies that if 

llf - PJ(A; )I IHUk, P Hlf - P,,(B; )Il UkP, 

then Pn(A; x) = Pn(B; x) a.e. on some E C Uk. Therefore, A = B. 
If HIn is a Haar subspace of C(X), then, since ,(E) > 0 for all Ei C U,, the hypoth- 

esis of Theorem 2.4 holds. 
Let I I l I o denote the uniform norm defined on C(X) by IIf I K. = max: tI(x)l, 

f E C(X. 
Theorem 2.5. Let Uk be an acceptable partition of X and let U1, I > k, be an ac- 

ceptable refinement of U,. Then, for 1 < p < o and f C C(X) 

(2.6) HIJHU6k, P 
H 

fl|tI, P -< |1f1. 

Proof. Suppose U, = { E4 =, and U, - {Dj", To prove the first inequality, 
it suffices to show that, if E, - IJ7> D , then 

max r,,(Di, f) > r (Er, f). 

Suppose that 

rj(D,, t) < rJ(E,, f), for i = 1, 2, , in. 

Then 

4(Dj) JD. If l dt < 1(Ej) k If 1 
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or 

iDf , dpu < {iD If l dg + + If d} i = 1 M*.* 

Sum both sides of this inequality over i to obtain the following contradiction: 

I If ip dl + + | If lp dA < A If/ lp d,u + . * * + | If I d<f.d 

For each Di E U1 and I ? p < c, there exists a point x1(p) E Di such that 

rp(Di, 
Uf fi AD) 

If i |f d8 <_ N fxA(PM. 

Therefore, 

HtIl, = max IJ(x.(p))I < |HflIl. 

We next consider the closeness of iifiiukP and ijfiJj,. 
rp(Ei, *) is a weighted Lp norm on E, j = 1, . , k. By Polya's algorithm, r,(E3, f) 

S- UPGE, j Jf(x)j as p -* c. This immediately implies the following: 
THEOREM 2.6. Let f E C(X), and let Uk be an acceptable partition of X. Then 

(2.7) IfIIU,vp HIfII, as p .co 

We are now concerned with the closeness of JifJuk, p and Iif ll for fixed values of p. 
Definition 2.7. Let 

(2.8) U* = {Ei E U,: there exists a point es e EE such that Jf(eji = 11f1j.1 

and define 

(2.9) y(U*) = min sup oa(x, y), 
EiGUk* x,UeEi 

where a is the metric on X. 
THEOREM 2.8. Given f E C(X), U, an acceptable partition of X, and 1 ? p < cc, 

(2.10) 1ifl IUk,P < I IfIL -< | IfIlUv + cO(y(Uk)), 

where w is the modulus of continuity of f on X. 
Proof. The first inequality follows from Theorem 2.5. 
For each Ei C U*, let xi(p) C E, be as defined in Theorem 2.5, and let e, e Ei be 

as defined in Definition 2.7. Then, 

IfIlK - If IIUk,P < If(ej)I - If(x.(p))I < lf(ei) -Axi(p)) 

-< w sup a(x, y). 
2~, yeEE 

The proof is completed by minimizing the right-hand side of this inequality over 
all Ei E U*, and noting that 

w(y(U*)) = min w Sup a(x, y) 

Definition 2.9. Let Uk = {IAF}: l be an acceptable partition of X. Define the 
mesh width for U, by 
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(2.11) (5(Uk) = max sup a(x, y). 
EiC-Uk X,VEEi 

COROLLARY 2. 10. Iff E C(X), and { U, }' is a sequence of acceptable refinements 
of X such that 

(2.12) ( Uk) 0, as k -- , 

then, for 1 < p < oo, 

(2.13) ifI IIUk,p I If I ask c. 

Proof. It suffices to note that 

5( Uk) ? -Y( U*), 

and to apply Theorem 2.8. 
COROLLARY 2.11. Iff E C(X), and f has an extreme point x* in the interior of X, 

then, given any fixed positive integer k, 1 < p < o and e > 0, there exists an ac- 
ceptable partition Uk of X so that 

(2.14) l if I IUk,V - I lf I 1- l If I I|Uk,p + E- 

Proof. Let 5 = 5(E) correspond to the definition of the continuity of f on X. 
The set E, = {x X: a(x, x*) < 5(E)} has positive measure. Let Uk contain the 
set E,. Then 

y(Uk) ? 5 and w(y(U*)) e. 

We apply Theorem 2.8 to complete the proof. 
Theorems 2.6, 2.8, Corollaries 2.10 and 2.11 motivate the use of the norm || I 

as a substitute for the uniform norm. This in turn motivates the use of Pfl(A(Uk, p); ) 
as an approximation to f which is nearly a best uniform approximation. 

The following theorem found in [3] shows that, if I If-Pn(A; .)I is nearly minimal, 
then Pn(A; ) is close to a best I I - I approximation to f. 

THEOREM 2.12. Let I I be any norm on C(X) and let f E C(X). Let 

p = inf flf- P4(A; .)I 
P (A; *) e ln 

and define 

(2.15) d* = { A* E Rn Iif - Pn(A*; *)II = P} 

Given any e > 0, there exists a 5 = 5(E) > 0 such that 

(2.16) If - P(A; )1I < p + 5 

implies 

(2.17) o-(A, C*) = inf a(A, A*) < E, 
A *C C * 

where an, is the Eliclidean metric on Rn. 

Theorem 2.12 and Corollary 2.10 can be combined to show-that, if 6(Uk) is small, 
then P7,(A(Uk, p); *) is nearly a best uniform approximation to f on X. 

THEOREM 2.13. Given f E C(X), 1 < p < o and any e > 0, there exists a 6 = 

6(E) > 0 such that for any acceptable partition Uk of X 

(2.18) 6( Uk) -< 6 
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implies 

(2.1I9) 0'.(A(Uk, p), (2*) < E, 

where a* is the set of parameters of the best uniform approximations to f on X. 
Proof. Harris [2] proves the case p = 2. The proof for 1 < p < c, p - 2, is 

exactly the same. Thus, the details are omitted. 
Theorem 2.13 provides the basis for an algorithm for the computation of a best 

uniform approximation to f on X. This algorithm is discussed in [5]. However, the 
necessity of increasing k is a disadvantage. 

As an alternative to increasing k, we can adjust the partition Uk, while keeping 
k fixed, so that the resulting best II IUk.p approximation is nearly a best uniform 
approximation. An algorithm to achieve this is presented in [5]. This procedure is 
motivated by the following: 

Definition 2.14. A subset S- {xi} I, of the extremal points of f - P*, where 
P* is a best uniform polynomial approximation to f on X, is said to be a critical 
point set if P* is a best uniform approximation to f on S, but is not a best uniform 
approximation to f on any proper subset of S. 

THEOREM 2.15. Let P* be a best uniform approximation to f E C(X) and let S- 
{ xi be a critical point set,forf - P*, and, for 6 > 0, 

(2.20) E1(b) = {x E X : o(x, xi) < 6X, i = 1, 2, v . *, v. 

Given any positive integer k > v, 1 < p < 0 and E > 0, there exists an acceptable 
partition Uk = { Ei } k=, of X, such that 

(2.21) o'n(A(Uk, P), a*) < E, 

where a* is the set of paramneters of the best uniform approximations to f on X. 
Proof. The case p = 2 is proved in [4]. The basic idea of this proof is identical 

to that given there. Thus, we shall omit the details. 

3. Characterization of a Best , Approximation. The following theorem 
appears in Cheney [1]. 

THEOREM 3.1. Let U be a compact subset of R'. A necessary and sufficient con- 
dition that the system of linear inequalities (u, z) > 0 (u EE U) be inconsistent is that 
the origin in R' belongs to K(U), where K(U) denotes the convex hull of U. 

This theorem is used to characterize a best I I I IUk,P approximation, for p even. 
THEOREM 3.2 (CHARACTERIZATION). Let Uk = {IE'} , be an acceptable partition 

of X, anad let f E C(X). Let p be an even positive integer. 
Ilf - P(A; .)IIUk.v is a minimum over all P,,(A; -) E I,, if and only if the origin 

in R' belongs to the set 
n n 

K{Ci + 2 Ea1,C'. + 3 E aiZai,C i3 + 
~~~~~~~~~~i 2 1i - 

n 

+ (p-1E i i .i ...-_ 

(3.1) 

+ prE f AI P,KA; .a)I ai} 

rp(Ei f- PJ(A; )) If l- PJ,A; .)||[k,V 
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wherefor i4- 1, , n, i2 = 1, , n, , ip = 1, , n, andl = 1, ,p - 1, 

(3.2) ..E,i = pij di, 

(3.3) C' =(ci, ci c 

(3.4) CW2i I (cl C2i ..... i,c 2 .. it, n, cn 2 ), 

(3.5) d Z = u() L . . d, 

(3 .6) Di~i2 . . . iD = ( i 2 . . . ip, d 2,2 . . .iP, n, 2 ...i 

Proof. The proof is essentially the same as the proof of the characterization 
theorem on p. 73 of Cheney [1]. Thus, we prove only the sufficiency, and omit the 
details of the necessity. p is assumed even, so that the definition of r,(Ei, f) does not 
include an absolute value under the integral sign. 

Suppose that If - P(.4; *)IIUl,P is not a minimum. Then, there exists a B C Rn 

such that 

if - P(A - B; *)|uk,P < lf - PJ(A; *)IIuk,P. 

Then, for all j such that 

(3.7) r,(E3, f - Pn(A; )) i lf - Pn(A; .)IHuk,P 

rp(E,, I - Pn(A - B; )) < r,(E3, f - Pn(A; *)). 

Also, for 0 < X < 1, 

rj(E3, f - Pn(A - XB; <)) rp,(E,, f - Pn(A; )) 

Using the notation of (3.2)-(3.6), this is equivalent to 

rp(E;, f - Pn(A - XB; p)) r(Ei, f - Pn(A; )) 

n rn n 

- x ~ bi, + 2 ai2,cilj> + 3 aai.ciIi2iS +* 

+ ( p-ai2. * a)-,c', ...> ip_ 

+ p ai, ai d7*...i. +O(X2) 

= rp(Ei, f Pn(-A; 

/ n 

-XB GCi + 2 + 3 3 + XB.~~~~~i a] iC 3 ai.a 
3 = 

n 

+ (p- 1 ai, *-- aip- Ci ........ ip 

n 

+ p ?(X) E,ai, f P aip DA *)-ip 

+ 0(X2 ) < r"(Ei, f - P,( A;). 
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For this inequality to hold for 0 < X ? 1 and X sufficiently small, it is necessary 
for the inner product appearing there to be positive for all j satisfying (3.7). Theorem 
3.1 completes the sufficiency. 

4. Uniform Approximation Through the Use of a Pseudo Norm. Theorem 3.2 
does not readily lead to a computational algorithm for best II , approximation. 
As an alternative, Harris [2] suggests the use of a pseudo norm defined as follows: 

Definition 4.1. Let Uk { Ei }'_ be an acceptable partition of X. For f C (X), 
define 

(4.1) s(Ei,f) = I L f dg 

and define a pseudo norm by 

(4.2) PSI! IfIuk = max Is(Ei, f)!. 
i=1, -* * .k 

There exists a best psij - Iiu polynomial approximation to f. However, the best 
approximation is not in general unique. 

Several of the results of Section 2 for u| | extend to psl I j I I u1 
THEOREM 4.2. Let U, be an acceptable partition of X, and let Ul, I > k, be anl ac- 

ceptable refinement of Uk. Then, for f C C(X), 

(4.3 ) pSI | I fl |Uk - sIIfI t1- I 1f 1l1 
and 

(4.4) 1 If l :_- PSI If I lUk + w('(U*k)) 

Proof. Suppose Uk = {Ei}i.. and U1 = {Di}'-,. Consider E, = Um_ Di. 
Suppose that 

Is(D.i, f)I < Is(E,, f)I, for i = 1, m. 

Then 

; f d, < d()f Idl 

or 

IJf dyl < (E)IJ f d,4 + +D f ld 

Sum both sides of this inequality over i to obtain the following contradiction: 

f D A I J f d |< f dz + + I f dA 

The remainder of the proof is exactly as in Theorems 2.5 and 2.8. Thus, the 
details are omitted. 

COROLLARY 4.3. Iff C C(X) and { Uk,} U, is a sequence of acceptable refinements 
of X such that 

(4.5) a(Uk)--O ask -+c, 
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then 

(4.6) PsiifIlUk T ||fl as k - . 

COROLLARY 4.4. If f E C(X) and f has an extreme poinit x* in the interior of X, 
then, given any positive integer k and e > 0, there exists an acceptable partition Uk of 
X so that 

(4.7) PslIfIlUk - |f1|1- PS|IfIIUk + 'E 

The following theorem characterizes best polynomial approximation to f in 

psI * IIlU, 
THEOREM 4.5. In order that the coefficients a1, , an shall render psllrl I u, a 

minimuon where r _ f - ,i , aj(p;, it is necessary and sufficient that the origin of 
an n-space shall lie in the convex hull of the point set 

(4.8) H = r d,a xi : Is(E, r)| = PsIJrIIlUkI} 

where Sci denotes the n-tuple [E (Pi di, JE; (P2 d,* , i Y)n d]. 
Proof. The proof is essentially identical to that given in Cheney [1, p. 73]. We 

therefore present only the sufficiency. 
Suppose psllr - Qllu. < psllrliuk, where Q = Enl bi(pi. For all j such that 

s(E1, r)I = psIlrl lUk, 

is(Ei, r - Q)j < Js(E;, r)I or S(E, r -Q) < s2(E, r), 

fromn which we obtain the following system of linear inequalities to be satisfied by 
B (bl ... 

fE d r b. L d = f r d,u (B, x;) > 0. 

By Theorem 3.1, 0 (E K(H). 
Define 

(4.9) MC E - () L, f dIE and E 1 (E;) fEij 

1, 2, *-, n; j = 1, 2, *. ,k. 

Then, 
n \n 

(4.10) s E, f- - aj) = - aidi. 

Therefore, the problem of minimizing psljf - I aiopjjj, is equivalent to the 
problem of finding a1, , a,, and p(min) so that 

(4.11) -P-<i - 3E a-di_ < P, = 1, 2, *** ,k. 
,=1 

This is a linear programming problem. This approach has been used to minimize 

pIIf En ay9 I | Uk in [2]. 
The clhief purpose in computing a best pslI IlUk approximation is to compute an 
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approximation which is nearly a best uniform approximation. The corresponding 
analogues to Theorems 2.13 and 2.15 hold for best psl I -IIu approximations. This 
justifies their use as nearly best uniform approximations. 

5. An Alternation Theorem. This section follows the development in Cheney 
[1, pp. 73-75]. 

Consider the case X = [a, b], and choose 

(5.1) a = xo < xl < < xk =b, k ? n. 

Define 

(5.2) E = [xi-1, xi], j = 1, 2, ... , k. 

Then U, = {EiJ =1 is an acceptable partition of X. 
Let oi } n= satisfy the Haar condition on [a, b]. 
LEMMA 5.1. Each determinant 

F 1I d f A o2 dA . L011 dy 

(5.3) Det(Eil, .., Ei) = * . 0, 

IF I. dA .2 dU ... j p dy 
i n Ein in 

where I Ei } in_ consists of distinct subsets of X as definaed by (5.1) and (5.2). 
Proof. If Det (Ei,, * , Ein) =0, then there exists a nontrivial linear combination 

of the columns which vanishes. Therefore, there exists a nontrivial polynomial 
P = aispi such that 

f P d,u * f P d = 0. 
.E jl I' ~~~~~in 

Therefore, P vanishes at least once in the interior of each interval E i, i = 1, 2, ... , n, 
which contradicts the Haar condition for { i,n=l. 

Definition 5.2. Let Ei, = [xi,-,, xJ and E,,, = [ xiJ] as in (5.1) and (5.2). 
Then we say 

(5.4) E?7 < Ei,, if xi, < xi,-. 

LEMMA 5.3. Let (5.1) and (5.2) hold. In addition, choose a = yo < y, < ... < 

Yk = b and define Di = [yi-1, y1Jfor j = 1, 2, , k. If Ei, < E *, 2 K < Ein and 
Di, < Di, < ... < Din, then 

Det(Ei2, E, ..., E,,) and Det(D12, DI2, *-, DI,) 

have the same sign. 
Proof. Suppose 

Det(Ei2, E,, 
i 

., Ein) < 0 < Det(D,, DI2, DI , 

then there exists a X C (0, 1), such that 

Det(XE,, + (1 - X)D11, *-.., XEi. + (1 - X)D,,) = 0, 
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where 

XE7, + (1 - X)Dj, = [Xxi,-1 + (t - X)yl,-l, Xxi, + (I - X)yjj], 

v 1,2, ,n. 

Lemma 5.1 implies that, for some v < i7, 

XEj, + (I - X)Dj, = XEi, + (I - X)D1,, 

which implies that the right endpoint of these two intervals must be the same. There- 
fore, 

Xxj, + (I - X)yj, = Xxj, + (I - 1 )Y,, 

which implies 

X(xj, xi,) (1 - -)(JI Y1n) 

Since both X > O and 1-X > O, x, -xi, and y,,- yi, have opposite signs, which 
is a contradiction. 

LEMMA 5.4. Let the hypothesis of Lemma 5.3 hold, with the additional hypothesis 
that we choose {Ei} i n_, from Uk so that 

(5.5) Ei. < Eji < ..< E; n- 

Let Xo, * , X)\ be nonzero constants. In order that the origin lie in the convex hull of 
the n-tuples X- jo * ,,Xi, it is necessary and sufficient that the X's alternate in 
sign: XXi 1 < 0 for j = 1,2, , n. 

Proof. The proof is exactly the same as the proof of the lemma on p. 74 of [1], 
with the exception that Lemma 5.3 replaces the first paragraph of that proof. 

THEOREM 5.5 (ALTERNATION THEOREM). Let {I sa } 
n be a system of elements of 

C[a, b] satisfying the Haar condition, and let X be any closed subset of [a, b]. Choose an 
acceptable partition Uk of X into k > n subintervals. In order that P = _ ai o, 
shall be a best psl I * I I Uk approximation to a given f E C(X), it is necessary and sufficient 
that the function s(., r) exhibit at least n + 1 "alternations" where r f - P. That is 

(5.6) s(E1,, r) = -s(E ,_,, r) = ?psijfrflu v = 1, 2, , 

wvith 

(5.7) Ej < E;, < < Ej, anrd E1p C Uk, V = 0, 1, n. 

Proof. The proof is exactly the same as the proof of the alternation theorem on 
p. 75 of [1]. In particular, it relies on the Characterization Theorem 4.5 and Lemma 
5.4. We shall omit the details. 

6. Conclusions. The norms of Sections 2 and 3 and the pseudo norms of Sections 
4 and 5 provide good approximations to the uniform norm. The pseudo norms are 
particularly advantageous for the computation of best approximations through the 
use of either linear programming or an exchange algorithm based on the Alternation 
Theorem of Section 5. Theorems 2.13, 2.15 and their analogues for best pseudo norm 
approximation suggest that through proper modifications of the partitions, the 
approximations defined in this paper are arbitrarily close to best uniform approxima- 
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tions. Algorithms to achieve this are discussed in [5]. These procedures are of particu- 

lar interest when X is multidimensional. 
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